
The composition of Cart3D output files

page 1 8/26/02

The Composition of Cart3D Output Files

default filename: <mesh.c3d>

Output files are written in C binary using the fwrite from <stdio.h>. As the “cubes” mesh generator exe-
cutes, it writes two separate temporary files “temp.cell” and “temp.face” which are opened during
volume mesh generation, and appended during cut-cell mesh generation. At the end of execution, cubes
concatenates these two files together to make a single output file (default name is mesh.c3d). The first
sketch shows the general structure of this file.

b. Cell Lists

c. Face Lists

volume Cells

cut-cells

face list of volume cells

face list of cut-cells

te
mp
.c
el
l

te
mp
.f
ac
e

nVolHexes
nCutHexes
nSplitCells
nFlowFaces

nCutFaces

a. Header

Faces[X/Y/Z]

The composition of Cart3D output files

page 2 8/26/02

a. Header information:

nVolHexes: Number of fully “FLOW” Cartesian hexahedra in the volume mesh (not counting
any “INTERSECTED” cells) (type “int”)

nCutHexes: Number of Cartesian hexahedra which actually intersect the solid wall boundaries.
(type “int”)

nSplitCells: The number of polyhedra into which the “split-cells” are cut. (see figure). (type
“int”)

nFlowFaces: The number of flow-through, non-intersected Cartesian faces connecting the
nVolHexes FLOW hexes in the volume mesh. Note that only faces whose adja-
cent cells have status FLOW | FLOW are counted by nFlowFaces. (type “int”)

Faces[X/Y/Z]: The number of non-intersected hex faces in each Cartesian direction in the face
list. The list of un-cut faces is sorted, so that retaining these three integers uniquely
identifies which faces are in which direction. (type “int”)

nCutFaces: The total number of flow-through faces associated with all the cut-cells. This is the
number of face-polys of the cut-cells, and includes non-intersected faces whose
adjacent cells have status “INTERSECTED | FLOW”. (type “int”)

b. Cell Lists:

Two arrays of structures describe cell-based information. (1) The first describes the Cartesian cell infor-
mation only (location, name, size, etc.). It is organized with the list of nVolHexes volume cells (type
“FLOW”) before the list of “INTERSECTED” hexes which cut the boundary. (2) The second array con-
tains additional information about the cut-cells. Since some of these may be split into many different con-
trol volumes (split-cells) there are a total of nCutHexes + nSplitCells entries in this array. The
first nCutHexes entries correspond (1-to-1) with the last nCutHexes of the Cartesian cell list. The
remainder of entries are split-Cells.
#define DIM 3 /* ...for 3 space dimensions */

/* ---- declare low storage hexs ---- */
typedef struct TinyHexStructure ts_TinyHex;
typedef ts_TinyHex *p_tsTinyHex;

/* -- define tiny hex type flags - */
typedef enum {UNSET_HEX, FLOW_HEX, CUT_HEX, SPLIT_HEX } tinyHexType;

struct TinyHexStructure { /*define the complete structure */
INT64 name; /* -->name tells position in mesh */

a. Header
nVolHexes
nCutHexes
nSplitCells
nFlowFaces

nCutFaces
Faces[X/Y/Z]

The composition of Cart3D output files

page 3 8/26/02

char ref[DIM]; /* -->Num. of cell divisions in X,Y.Z */
byte hexType; /* --> (byte) cast of tinyHexType */

};

Cell Lists (continued):

typedef double dpoint3[DIM]; /* -- define double 3D point --------*/
typedef dpoint3 *p_dpoint3;

/* ---- declare annotated cut-cell with full surf info ----*/
typedef struct CutCellStruct ts_CutCell;
typedef ts_CutCell *p_tsCutCell;

struct ts_CutCell{ /* ...define the complete cut-cell structure */
int nIntTri; /* --> no. of tri’s connected to cell */
dpoint3 normal; /* --> agglomerated surf norm vec. */
dpoint3 centroid; /* --> volume centroid of cell */
double volume; /* --> volume of cell */
int splitIndex; /* --> splitIndex < 0: hex not split */

/* 0≤splitIndex < nCutHexes: pt to splitParent */
/* splitIndex ≥ nCutHexes: pt to first splitKid */

int *p_IntTriList; /* --> ptr to list of indices of intersect triangles */
p_dpoint3 p_centroids; /* --> ptr to list of centroids of tPolys */
double *p_area; /* --> ptr to list of areas of tPolys */

};

The “Cell Lists” are written to the file with 4 sequential writes.
1. Write the Cartesian hex info for the nVolHexes un-cut (volume mesh) cells.
for(j=0;j<nVolHexes;j++){

b. Cell Lists
list of volume cells

list of cut-cells

Cartesian
Cells

Additional
Cut-Cell Info

nVolHexes

nCutHexes

nSplitCells

defined by
cutCell Structs

tPolyInfo
(includes centroids, areas, etc)

type
ts_TinyHex

type
ts_CutCell

The composition of Cart3D output files

page 4 8/26/02

 fread(&p_VolHexes[j].name, sizeof(INT64), 1,p_InputMeshstrm);
 fread(&p_VolHexes[j].ref[0],sizeof(char), DIM,p_InputMeshstrm);
 }

2. Write the Cartesian hex info for the nCutHexes cut (body intersecting) cells.
for(j=0;j<nCutHexes;j++){

 fread(&p_CutHexes[j].name, sizeof(INT64), 1,p_InputMeshstrm);
 fread(&p_CutHexes[j].ref[0],sizeof(char), DIM,p_InputMeshstrm);
 }

3. Begin filling out the cut-cell information.
{
int j, totalTri = 0;
p_tsCutCell p_CutCells;

for(j=0;j<nCutHexes+nSplitCells;j++){
fwrite(&totalTri, sizeof(int) ,1,p_TmpCellFile);
fwrite(&p_CutCells[j].nIntTri, sizeof(int) ,1,p_TmpCellFile);
fwrite(p_CutCells[j].normal, sizeof(dpoint3),1,p_TmpCellFile);
fwrite(p_CutCells[j].centroid, sizeof(dpoint3),1,p_TmpCellFile);
fwrite(p_CutCells[j].volume, sizeof(double),1,p_TmpCellFile);
fwrite(&p_CutCells[j].splitIndex,sizeof(int) ,1,p_TmpCellFile);

 totalTri+=p_cCells[j].nIntTri;
 }
}
4. Write the triangle/tPoly info for each cut-Cell.
{
int i,j;
p_tsCutCell p_CutCells;

for(j=0;j<nCutHexes+nSplitCells;j++){
for(i=0;i<p_CutCells[j].nIntTri;i++){ /* <-- No. of tris linked to cell */
fwrite(&p_CutCells[j].p_IntTriList[i],sizeof(int) ,1,p_TmpCellFile);
fwrite(p_CutCells[j].p_centroids[i], sizeof(dpoint3),1,p_TmpCellFile);
fwrite(&p_CutCells[j].p_area[i] , sizeof(double) ,1,p_TmpCellFile);

 }
 }
}

The composition of Cart3D output files

page 5 8/26/02

c. Face Lists

Cell-to-cell mesh connectivity is stored through face-lists. For compactness, these come in two special-
ized datatypes, (1) Cartesian face lists - this is a minimal face structure, and is used only for non-inter-
sected mesh faces, (FLOW | FLOW). It has only two entries - the indices of the un-cut Cartesian cells on
either side. This list is sorted so that the first Faces[X] faces have normal vectors in the x direction, and
these are followed by the y and z faces. (2) The second datatype is a more general Cartesian face struc-
ture which includes the face area, centroid, etc.. for cut cells. Indexing into the cell lists assumes a contig-
uous, sequential cell numbering, starting with the un-cut volume cells, through the split cells. Obviously,
the first nVolHexes indices refer to volume cells, and higher indices refer to cut or split cells. Faces at
topological mesh boundaries (far-field, symm etc..) have cells on only one side, degenerate cases are
denoted with a NO_CELL_FLAG_INDX = -1.

/* ---- declare low storage Cart Face ---- */
typedef struct VolumeFaceStructure tsVface;
typedef tsVface *p_tsVface;

struct VolumeFaceStructure { /* ...define the complete structure */
int adjCell[2]; /* --> 0 = Index of cell on low side */

}; /* 1 = Index of cell on high side */

typedef struct CutFaceStructure tsCface; /* ---- declare Cut Cart Face (lots of info) ----*/
typedef tsCface *p_tsCface

struct CutFaceStructure { /* ...define the complete structure */
int adjCell[2]; /* --> 0 = low, 1 = high */
dpoint3 centroid; /* --> area centroid of face */
double area; /* --> area of face */
char dir; /* --> 0 = X, 1 = Y, 2 = Z */

};

Both of these lists are written with a single write statement.
{
p_tsVface p_Faces;
p_tsCface p_cFaces;

/* ...1. Write out Cartesian faces for volume mesh (uncut faces) */
fwrite(p_Faces, sizeof(tsVface), nFlowFaces,p_TmpFaceFile);

/* ...2. Write out Cartesian face information for cut Cells */
for(j=0;j<nCutFaces;j++){ /* (just like we wrote ‘em) */

fwrite(p_cFaces[j].adjCell, sizeof(int), 2, p_InputMeshstrm);
fwrite(p_cFaces[j].centroid,sizeof(dpoint3), 1, p_InputMeshstrm);
fwrite(&p_cFaces[j].area ,sizeof(double), 1, p_InputMeshstrm);
fwrite(&p_cFaces[j].dir ,sizeof(char), 1, p_InputMeshstrm);

 }
}

c. Face Lists
face list of volume cells

face list of cut-cells

